Search results

1 – 2 of 2
Article
Publication date: 9 August 2013

Yuxing Peng, Zhu Zhencai, Minming Tong, Chen Guoan, Xingguo Shao, Wan Ma and Yilei Li

This paper aims to analyze the friction heat conduction and entransy of two friction linings in the high‐speed slide accident of a mine friction hoist.

Abstract

Purpose

This paper aims to analyze the friction heat conduction and entransy of two friction linings in the high‐speed slide accident of a mine friction hoist.

Design/methodology/approach

Firstly, the dynamic thermophysical properties were analyzed and their fitting equations were also obtained. Additionally, the dynamic heat partition ratio was obtained according to the dynamic thermophysical properties. Then, a simple method was developed to solve the temperature rise of friction lining. Finally, based on the theoretical model of temperature rise, the entransy of friction lining with respect to T and t were gained.

Findings

The error of temperature rise between simulation result and experiment result is less than 7 per cent, which proves that the theoretical model is correct. The entransy decreases with the temperature below 40°C and it increases after 40°C. The entransy of lining K is a little higher than that of lining G within 19 s, but the entransy of lining G is much higher than lining K after 19 s and the entransy difference gets great gradually. It is indicated that the lining K has good heat‐resistant property which is of great benefit to the tribological property of friction lining.

Practical implications

The authors' study provides a fundamental basis for developing a new friction lining with good heat‐resistant property, and it also brings forward a new quantitative method to evaluate the heat‐transfer capability of friction materials.

Originality/value

A simple method was introduced to calculate the temperature rise of friction lining with the consideration of dynamic thermophysical properties and dynamic heat partition ratio. And the entransy of friction lining was obtained to evaluate the heat‐transfer capability of friction linings quantitatively.

Details

Industrial Lubrication and Tribology, vol. 65 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 15 June 2012

Jiusheng Bao, Zhencai Zhu, Minming Tong, Yan Yin and Yuxing Peng

The purpose of this paper is to describe some tribological experiments which were executed to find the influence of braking pressure on tribological performance of non‐asbestos…

Abstract

Purpose

The purpose of this paper is to describe some tribological experiments which were executed to find the influence of braking pressure on tribological performance of non‐asbestos brake shoe used in mine hoister during its emergency braking.

Design/methodology/approach

The WSM‐3 non‐asbestos brake shoe, which has been widely used in mine hoister, was selected as experimental material. Some tribological experiments of the brake shoe sliding on 16Mn steel were investigated on the X‐DM friction tester by simulating of emergency braking conditions of mine hoister. Three kinds of tribological indexes: friction coefficient, stability coefficient of friction coefficient, and wear rate were considered to score the tribological performance and the morphology of worn surfaces were observed through the S‐3000N scanning electron microscopy (SEM) to explore the tribological mechanisms.

Findings

It was found first, that the instant friction coefficient is not constant during emergency braking. After a short climbing period, it rises gradually to steady value. Second, with the increasing of braking pressure, the mean friction coefficient rises first then falls, while its stability coefficient falls gradually. The wear rate rises continuously with the braking pressure increasing. Also, the rising velocity of wear rate at high pressure is higher than it is at low pressure. Third, the instant surface temperature rises first then falls during braking and the mean surface temperature rises continuously with the braking pressure increasing.

Originality/value

It is found that the increasing of braking pressure within a certain range is helpful for achieving a high friction coefficient and a steady wear rate. But too high pressure will cause contrarily the falling of frictional performance and serious of wear performance. So it is not reliable to rise the braking pressure without limited during emergency braking.

Details

Industrial Lubrication and Tribology, vol. 64 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 2 of 2